The Drosophila Hox Gene Deformed Sculpts Head Morphology via Direct Regulation of the Apoptosis Activator reaper

نویسندگان

  • Ingrid Lohmann
  • Nadine McGinnis
  • Morana Bodmer
  • William McGinnis
چکیده

Hox proteins control morphological diversity along the anterior-posterior body axis of animals, but the cellular processes they directly regulate are poorly understood. We show that during early Drosophila development, the Hox protein Deformed (Dfd) maintains the boundary between the maxillary and mandibular head lobes by activating localized apoptosis. Dfd accomplishes this by directly activating the cell death promoting gene reaper (rpr). One other Hox gene, Abdominal-B (Abd-B), also regulates segment boundaries through the regional activation of apoptosis. Thus, one mechanism used by Drosophila Hox genes to modulate segmental morphology is to regulate programmed cell death, which literally sculpts segments into distinct shapes. This and other emerging evidence suggests that Hox proteins may often regulate the maintenance of segment boundaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hox Proteins: Sculpting Body Parts by Activating Localized Cell Death

Hox proteins shape animal structures by eliciting different developmental programs along the anteroposterior body axis. A recent study reveals that the Drosophila Hox protein Deformed directly activates the cell-death-promoting gene reaper to maintain the boundaries between distinct head segments.

متن کامل

Drosophila sickle Is a Novel grim-reaper Cell Death Activator

The Drosophila genes reaper, head involution defective (hid), and grim all reside at 75C on chromosome three and encode related proteins that have crucial functions in programmed cell death (reviewed in ). In this report, we describe a novel grim-reaper gene, termed sickle, that resides adjacent to reaper. The sickle gene, like reaper and grim, encodes a small protein which contains an RHG moti...

متن کامل

DCP-1, a Drosophila cell death protease essential for development.

Apoptosis, a form of cellular suicide, involves the activation of CED-3-related cysteine proteases (caspases). The regulation of caspases by apoptotic signals and the precise mechanism by which they kill the cell remain unknown. In Drosophila, different death-inducing stimuli induce the expression of the apoptotic activator reaper. Cell killing by reaper and two genetically linked apoptotic act...

متن کامل

Genetic control of programmed cell death in Drosophila.

A gene, reaper (rpr), that appears to play a central control function for the initiation of programmed cell death (apoptosis) in Drosophila was identified. Virtually all programmed cell death that normally occurs during Drosophila embryogenesis was blocked in embryos homozygous for a small deletion that includes the reaper gene. Mutant embryos contained many extra cells and failed to hatch, but...

متن کامل

A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila.

The steroid hormone ecdysone directs the massive destruction of obsolete larval tissues during Drosophila metamorphosis, providing a model system for defining the molecular mechanisms of steroid-regulated programmed cell death. Although earlier studies have identified an ecdysone triggered genetic cascade that immediately precedes larval tissue cell death, no death regulatory genes have been fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2002